بررسی رفتار غیر خطی پاسکالی شناز شالوده‌ها و مقایسه آن با مقررات ملی ایران و آنی‌نامه نرب

علی خیرالدین و علی امیری

1 استاد دانشگاه مهندسی عمران: دانشگاه سمنان
2 عضو هیئت علمی مهندسی عمران، موسسه آموزش عالی اشرفیان بجنورد

(تاریخ دریافت 1400/6/24، تاریخ پذیرش اصلاح شده 1400/6/29، تاریخ پذیرش 1400/6/30)

چکیده

شنازه‌ها به منظور جلوگیری از حرقات پی‌ها نسبت به هم طراحی و اجرای می‌شوند. طبق مبحث مقررات ملی ایران و نرب، شنازه‌ها به ترتیب برای 20 و 25 درصد برگیرنده موجود (کشکش و فشاری) در هر یک از سطوح دو دو دهانه طراحی می‌شود. در این مطالعه سوالی که به دنبال می‌رسد این آیت که اگر شنازه‌ها به شیوه آین‌نامه‌ای ایران و نرب برای دو دو دهانه از بار محور جلوگیریست و بهترین همکاری در اطراف خارجی شنازه داشتهند. انتخاب بالاکشوری‌های دو دهانه و مدل پاسکالی شنازه‌ها به دو دهانه می‌شود. انتخاب بالاکشوری‌های دو دهانه می‌شود.

مقدمه

همیشه بعضی از فرم‌های اتصال در ترارک کم‌جهت پیوند و یکپارچگی فنودایسیون هر مجاور مورد می‌باشد.

شنازه‌ها از تغییر مکانیکی جانپیغیده‌ای به دیگری را یافته‌اند. این منطقه در محل با احتیاجات مختلف که انتخاب مکانیکی می‌کنند همچنین هر کس دارای درک کردن گیرنده اضافی برای پایه‌های سنتوی‌ها شرکت خواهد کرد و به مقامات در بررسی و ارائه‌های کمک خواهندم.

طبق مبحث مقررات ملی ایران [1] شنازه‌ها حركات افقی و عکس‌العمل که برای درصد برگیرنده موجود (کشکش و فشاری) در هر یک از سطوح دو دهانه از بار محوری یا کشکش و فشاری موثر است که دو دهانه از بار محوری یا کشکش و فشاری موثر است.

واژه‌های کلیدی: آنتی‌هیپ‌ری افزایش خاک و پی‌منفرد، نوش‌نشی، Euro code 8

پی‌منفرد به همراه پی‌نیروی بسیار تعادل منطقه از پی‌منفرد Euro code 8

باسکالی شنازه‌ها به دو دهانه می‌شود.
دکتری و از مدارک دیگری به جهت اطمینان از اطمینان در این تحقیق از انواع مودار ANSYS استفاده شده است.

شکلک و فولادگر مطالعه بر روی اثرات اندکی کشیدی و سازه بر روی پاسخ لرزه‌ای استخوان‌ها به‌منظور انجام واکنش‌هایی از مرکز هندسی پل ساخته می‌شود که در مورد یک برش، 30 درجه به صورت افقی بین 19 درصد افت‌شده است.

شهری تحقیق

در این تحقیق برای کنایه مدل‌ها تحلیل استاتیکی غیر خطی انجام شده است. برای این تحقیق از تحلیل استاتیکی دقیق برای برش، زنجیره از کناره‌های این بخش تظییح می‌شود. در این مقاله، به همین دلیل در حال ساختارهای مختلف از این استاتیکی غیر خطی باشد. این مقاله بر اساس این نمایش
تحقیق ضریب انتقال نرمال بر یک ترک بارز 23 و در یک ترک بارز 1: در نظر گرفتگی شده است. مقامات فشاری 28 روزه نموده استوانهای و ضریب پوستون بین نیز به ترتیب 220 کیلوگرم بر سانتی متر مربع و 2/3 فرآیند و منظور

تشکل 2: ضریب تنش-کرنش بر اساس معادله هاکستاد

احال شده در ناحیه فشاری

2-1- میلگرد

برای مدل سایزی میلگرد به طور مستقیم از المان استفاده شده و به منظور در نظر گرفتن فشار Link 8 استفاده شده و به منظور در نظر گرفتن فشار ANSYS استفاده شده و به منظور در نظر گرفتن فشار Barkin استفاده شده و به منظور در نظر گرفتن فشار ANSYS استفاده شده و به منظور در نظر گرفتن FVOLADY 3000 سانتی متر مربع

مطالعه جدول (1) استفاده شده است. [9]

جدول 1: مشخصات مکانیک خاکها و ضرایب فنر مورد استفاده

<table>
<thead>
<tr>
<th>K_x</th>
<th>K_y</th>
<th>V</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td>400</td>
<td>0.25</td>
<td>500</td>
</tr>
<tr>
<td>478</td>
<td>321</td>
<td>0.25</td>
<td>350</td>
</tr>
<tr>
<td>373</td>
<td>250</td>
<td>0.25</td>
<td>200</td>
</tr>
<tr>
<td>1317</td>
<td>118</td>
<td>0.25</td>
<td>100</td>
</tr>
</tbody>
</table>

ضریب الاستپتیسه خاک E سانتی متر مربع و ضریب پوستون K_x و K_y به ترتیب ضریب سختی ماده بر فرد حالت اقیانوس و قائم بر حسب تر سانتی متر می باشد.
3- معرفی مدل‌ها

در کلیه مدل‌ها ابعاد پایه منف reddit 120cm × 120cm × 40cm و ابعاد مقطع شنا ساز 30cm × 40cm می‌باشد ابعاد سنتیک مدل شده نیز می‌باشد. در جدول ۲ به‌طور خلاصه به کلیه مدل‌های مورد بررسی در این قسمت اشاره شداست. فاصله افقی بین دو پی منفده می‌باشد. در نامگذاری مدل‌ها، حرف T نشان‌گر شنا ساز و H افقی می‌باشد.

جدول ۲: مدل‌های مورد بررسی پی منفرد

<table>
<thead>
<tr>
<th>بار تابع اولیه (ton)</th>
<th>نوع شاخ</th>
<th>L (m)</th>
<th>نام مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>III</td>
<td>3</td>
<td>THL3</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>4</td>
<td>THP4</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>3</td>
<td>THE10</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3</td>
<td>THL4</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>4</td>
<td>THE35</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>4</td>
<td>THE50</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>5</td>
<td>THP10</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>6</td>
<td>THL5</td>
</tr>
</tbody>
</table>

بررسی و تحلیل نتایج

یکی از موارد مهم در طراحی شنا ساز، بررسی نیروی ایجاد شده در میانگردهای شنا ساز در طی بارگذاری‌های دینامیکی با استانداردی و ضعف‌های ایجاد شده در آن می‌باشد. بدين منظور به جهت بررسی بهتری و درک بهتر پارامترهای مؤثر در طراحی شنا سازها، نیروی محوری حداکثر بین دو سطح (نیروی سطح) به نیروی طراحی شنا ساز و همچنین به نشست نیروی سطح حالت مطالعه شداست. این سه مطالعه و بررسی عبارتند از:

1- بررسی فاصله افقی دو پی منفرد

2- بررسی تأثیر نوع شاخ در تحلیل پی منفرد

3- بررسی تأثیر بار تابع اولیه (بار نقلی) در تحلیل پی منفرد

در این تحقیق شاخ توسط فرشهای بی‌بند و بی‌سازی شده است. بنابراین طراحی شنا سازا با نظر گرفتن اندرکش شاخ و پی انجام می‌شود، مواردی که در این
قسمت از بحث می‌تواند مورد بررسی و مقایسه قرار گیرد:

شامل ورودی و خروجی‌های مساده‌های املان محدود:

یافته‌ها تهیه و نشانگر حداکثر نیروی محوری ایجاد شده در میلگردی و نیروی حداکثر در پای سونهای در هر مرحله بارگذاری و ورودی، تغییر می‌کند افقی در 25 متری پای سونهای می‌پدید آن مسلم است در خروجی‌های گرفته شده از مساده‌های املان محدود، اثر اندرکش خاک و پی اندازه‌سازی و در تغییر افقی در 0.01 متری پای سونهای که حداکثر و مرحله بارگذاری می‌رسد. روزگاری این اندازه‌سازی با مقایسه این بارامترها، می‌توان اثر اندرکش خاک و پی را در طراحی و نشانده کرده و همکاری آنها ممکن است.

با توجه به نکته مبهم مفرزات ملی ساختمان:

10 درصد حداکثر نیروی محوری ستونهای دو طرف

پای ایستاده و NEHRP 25 درصد آن را برای طراحی میلگردهای شناز در نظر می‌گیرد. اگر بخواهیم در کلیه مدل‌های این تحقیق، میلگردیدی شناز در حد نهایی خود طراحی شوند در حین بارگذاری به جای شدن روزگاری نرسند، حمایت از آیین‌نامه‌های ایران و این مورد را نمی‌توان به نمونه‌شناسی کرد. بله، خروجی‌های آن در نظر 27 درصد حداکثر نیروی محوری ستونهای دو طرف شناز لازم است تا میلگردیدی شناز در حد نهایی خود طراحی گردد.

خاطر نشان می‌شود علت این اختلافات، تفاوت‌های نسبت به طراحی و عملکرد شناز در آیین‌نامه‌های ایران و NEHRP و آنچه که در این تحقیق بررسی شده است به‌صورت Chrome

2- بررسی نتایج افقی دو پی و منفرد

اطلاعات 2-1. بررسی کلی مساده‌های املان محدود شنازها، هنگامی که فاصله دو پی و منفرد 3 متر می‌باشد، میلگردیدی شناز در حد نهایی خود 48 درصد نیروی حداکثر در پای سونهای را تحمیل می‌کند. هنگامی که فاصله دو پی افزایش می‌یابد، برخی طراحی میلگردیدی شناز نیز افزایش می‌یابد. ولی اگر افزایش می‌یابد، در مقابل افزایش فاصله دو پی قبل توجه نمی‌باشد. بطوریکه با افزایش فاصله دو پی از 3 تا 5 متر، افزایش برخی طراحی میلگردیدی شناز فقط 4 درصد افزایش یافته دو پی با توجه به اندرکش خاک و پی در طراحی میلگردیدی شناز پایان‌داری چندان مهم و

شکل 7: تغییرات نیروی محوری حداکثر بین دو ستونه در پای سونهای دو طرف

SHAAP با نیروی طراحی شناز در بررسی فاصله افقی دو پی منفرد

بنا بر آنچه می‌تواند سند بررسی در این تحقیق در نظر گرفته شده باشد، منفی‌ها و منفرد به‌صورت Chrome
 advocat نمی‌باشد. در اینجا می‌توان رابطه‌ای را مطابق زیر برای نسبت نیروی طرابی شناز به نیروی محرور حداکثر بین دو ستون با توجه گرفتن فاصله افقی دو پی منفرد ارائه داد.

\[
P_{\text{bar}} / P_{\text{col}} = 0.03L + 0.39
\]

فاصله افقی دو پی منفرد و بر حسب متر می‌باشد.

یکی از وظایف مهم شنازها به عنوان یکی از اجزای پی جلوگیری از نشسته‌های نامنظم یا پایی‌ها می‌باشند. بنابراین بررسی نشسته‌های اینجا به‌منظور مقدار مختلف می‌تواند مفید و مؤثر باشد. هم‌اکنون که در شکل 8 مشخص است، در هر تغییرکرمان افقی مشخص در ستون، در مدل که فاصله افقی دو پی آن 3 متر است، بیشترین نیرو در پای ستون و مدل که فاصله افقی دو پی آن 5 متر کمتر داشته و نیرو در پای ستون ایجاد شده است. علت این تفاوت، اندرکنش خاک و پی و امکان دوران پی‌ها و توزیع نیروی توان در هر ستون در مدل‌های مختلف است. البته این تفاوت از زیاد نیروهای افزایشی نیرو در پای ستون و در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد نیروهای افزایشی نیرو در پای ستون و در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد نیروهای افزایشی نیرو در پای ستون و در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد نیروهای افزایشی N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]

باشد. بلکه، در مدل کمترین مقدار با داشت است. البته این تفاوت از زیاد N

\[
N = 100 - 0.5z
\]
آسیب‌نامه به‌ویژه ایرانیان می‌باشد. رابطه زیر نشان‌دهنده نسبت نیروی طراحی شناز به نیروی محوری حداکثر بین دو ستون در بررسی تأثیر نوع خاک در تحلیل پی منفرد می‌باشد.

\[
\frac{P_{\text{bar}}}{P_{\text{col}}} = 0.000525E + 0.3175
\]

ضریب الاسترسیونه خاک و بر حسب کیلوگرم بر سانتی‌متر مربع می‌باشد.

شکل 10: تغییرات نیروی محوری حداکثر بین دو ستون در پای ستون به نیروی طراحی شناز در بررسی تأثیر نوع خاک در تحلیل پی منفرد.

شکل 11: تغییرات نیروی طرافی افقی ستون به نیروی محوری حداکثر بین دو ستون در پای ستون در بررسی تأثیر نوع خاک در تحلیل پی منفرد.

شکل 12: تغییرات نیروی طرافی افقی ستون به نیروی محوری حداکثر بین دو ستون در پای ستون به نیروی طرافی افقی ستون در بررسی تأثیر نوع خاک در تحلیل پی منفرد.

- بررسی تأثیر بار ثابت اولیه (بار ثابتی) در تحلیل پی منفرد

- برایه تقلی ممکن است در طراحی شنازها تأثیر گذار باشد. این مورد در شکل 13 مورد همایش می‌باشد. همان‌طور که مشخص است هنگام که نیروی تقلی افزایش می‌یابد، شنازها سختی که نیروی طراحی می‌شود ولی تأثیر این فاکتور بسیار نمی‌باشد. بطوریکه با افزایش نیروی تا 15 بار در هر 0/05P_{\text{col}} افزایش می‌یابد. با افزایش نیروی طراحی افزایش نقطه قطع افزایش می‌یابد. بنابراین بطور چری هنگام گرفت بار نیروی حدود 10 درصد کل بار (نقی و جانی) در طراحی
و پی در تأثیر بارهای تقلیل به نیروی حداکثر پای ستون ناجی است. از طریق تهیه ۱۵ مشخص است با افزایش تنا بار تقلیل در انتهای بارگذاری فقط ۰.۱۱ میلیمتر تفاوت نشست نسبی و جود دارد که مقایسه ناجی است. همچنین با بررسی شکل ۱۶ نیز تأثیر کم بارهای تقلیل در نشست نسبی شنوار مشخص می‌شود. بنابراین با توجه به موارد فوق، می‌توان گفت ارتباط بین ایندکس‌های خاک و پی و بارهای تقلیل در افزایش نشست‌های نسبی شنوار کم اهمیت و ناجی است.

$$\frac{P_{\text{bar}}}{P_{\text{col}}} = 0.563 - 0.00833P$$

شکل ۱۲: تغییرات نیرو محوری حداکثر بین دو ستون در پای ستون به نیروی طراحی این ستون در تأثیر بار تاپ اولیه (بار تقلیل) در تحلیل پی میافید.

شکل ۱۳: نشست‌های نسبی شنوار در نیرو محوری حداکثر بین دو ستون در پای ستون به نیروی طراحی این ستون در تأثیر بار تاپ اولیه (بار تقلیل) در تحلیل پی میافید.

شکل ۱۴: تغییرات نیرو محوری حداکثر بین دو ستون در پای ستون در تأثیر بار تاپ اولیه (بار تقلیل) در تحلیل پی میافید.

آنجایی‌که در شکل ۱۴ ملاحظه می‌شود، با افزایش بارهای تقلیل، نیرو محوری حداکثر بین دو ستون به نیروی محوری حداکثر بین دو ستون در پای ستون در تأثیر بار تاپ اولیه (بار تقلیل) در تحلیل پی میافید.

بررسی رفتار غير خطي
نتیجه گیری

پارامترهای سیاری در بررسی ساره بی‌پر نتایج ثبت گردیده است. این جمله در بررسی طراحی نهایی پرداخته شده است.

شکل 17: گانلون تشخیص ویروس بر حسب کیتوگرم بر THL4

سلامتی مربی در مدل THL4

شکل 18: نمای سه بعدی از ترک خورودگی در مدل THL4

پیشروه مهندسی عمران و نقشه برنامه دانشگاه فنی، دوره 45 شماره 5، ماه 1396

شده از تنش فشاری مجاز بین و تنش کششی اجادات شده از نشک کششی مجاز بین شین‌شدن، به ترتیب خورودگی و ترک خورودگی در جسم بین اتفاق می‌افتد. توزیع تنش در مدل THL4 که به عنوان نمایه‌ای از بین مدل‌ها انتخاب می‌گردد، مطالب شکل 17 می‌باشد.
مشخصات های زیاد و تغییرکشی‌های ماندگار در پی شناسایی نیروی محوری نرم و ایران که به صورت عضوی موجب فرض و طراحی شیوه‌های انواع یک عضو خمی و با نیروی طراحی بیشتری طراحی گردند.

مراجع

13. Tasmo, A.A., Behavior and Vibrating Design of Reinforced Concrete, Center of Research of Building and Housing.
15. Amiri A., (2008); "Structural Study of Shallow Foundations with Split Level Against Earthquake", Thesis of Postgraduate of Civil Engineering (structure), Semnan University, Faculty of Civil Engineering.

واژه‌های انگلیسی به ترتیب استفاده در متن:

1. Rocking
2. Displacement control
3. Load control
4. Creep
5. Flexural Cracks
6. Diagonal tensile Cracks
7. Compressive Cracks