.

بررسی اثر پارامتر حالت در معادلات رفتاری با استفاده از نتایج آزمایش های سانتریفوژ منوچهر لطیفی نمین^{*۱} و زهرا سبزی^۲

(/ / 1 1 11)

VELACS 50g Pastor & Zienkiewicz Mark III

.

.

. "

.

. Pastor & Zienkiewicz(1990)

,

. (e)

DIANA-SWANDYNE II

چکیدہ

.

.

واژه های کلیدی:

مقدمه

. ()

.

[] Been & Jefferies(1985)

.[]

*

(*p*)

$$(\eta)$$
 (

.

.

$$(p')$$
$$\eta = M_g$$

.

Ishihara.et.al (1975)

.

.

$$(\theta) - M_g$$

$$[]$$

$$M_g = 6.Sin\varphi'_g /(3 - Sin\varphi'_g.Sin3\theta) \qquad ()$$

$$\varphi'_g$$

$$q = 6p'.Sin\varphi'_g /(3 - Sin\varphi'_g.Sin3\theta)$$
 ()

.

:

.

 $d_{g} = d\varepsilon_{p}^{p} / d\varepsilon_{q}^{p} \approx d\varepsilon_{p} / d\varepsilon_{q}$ $d\varepsilon_{q}^{p} \quad d\varepsilon_{p}^{p}$

$$darepsilon_q$$

 $G = q - 6.Sin \varphi_g' \,/ (3 - Sin \varphi_g'.Sin 3\theta) \times$ () $(1 + 1/\alpha_g)(1 - (\,p'/\,p'_g\,))$

.

) .[] (Pastor & III Zienkiewicz Mark

() Pastor & Zienkiewicz Mark III مدل فرضيات اساسى

.[]

.[]

()

 $d\varepsilon_p$.

 M_{f}

 η_{\max} [] γ_{DM} مدول پلاستیک بار گذاری $H_L = H_0.p'.(1 - \eta/\eta_f)^4.(H_v + H_s) imes$

ثابتهاي الاستيك

 (H_{evop}, H_{esop})

:

 $M_g M_f$

()

()

.

 $K = H_{evop}.p'$

 $G = H_{exop} \cdot p' / 3$

.[]

.

.

$$H_{L} = H_{0} \cdot p' \cdot (1 - \eta / \eta_{f})^{4} \cdot (H_{v} + H_{s}) \times$$
()
$$(\eta / \eta_{max})^{-\gamma_{DM}}$$
()
$$\eta_{f} = (1 + 1 / \alpha_{f}) \cdot M_{f}$$
()
$$H_{0}$$
$$H_{0}$$

$$(1-\eta/\eta_f)^4$$
 .

.
$$\eta_f$$
 H_v

$$H_{v} = (1 - \eta / M_{g}) \qquad ()$$

$$H_{v} \qquad M_{g} \qquad \eta$$

$$H_{v}$$

Wilde (1977) H_s

$$H_{s} = \beta_{0}.\beta_{1}.\exp(-\beta_{0}\xi) \qquad ()$$

$$\xi = \int \left| d\varepsilon_{q} \right| \qquad ()$$

$$d\varepsilon_{q} \cdot \beta_{1} \cdot \beta_{0}$$

 M_{g} p'-q

$$H_s$$

.

:

.

 M_{g}

استفاده از پارامتر حالت در مدل & Pastor Zienkiewicz Mark III

ارزیابی مدل اصلاح شده

.

%

.

() ()

VELACS

%

() ()

VELACS

VELACS

تعریف مکانیزمی برای تعیین ₈

(CSL) M_{g} :

$$if \quad \psi \ge 0 \Rightarrow M_g = M_{cs} * (2 - \exp(-\psi))$$

$$()$$

$$if \quad \psi \prec 0 \Rightarrow M_g = M_{cs} * (\exp(\psi))$$

$$\psi$$
 M_{cs}

$$\psi = e - e_{cr} \tag{()}$$

$$e_{cr} = \Gamma - \lambda * \ln(p')$$
 ()

%

.

شکل ۴: هندسه مدل شماره ۱۱ پروژه VELACS.

شکل ۲: محل قرار گیری ابزار دقیق در مدل شماره ۳.

جدول ۱: محل قرار گیری ابزار دقیق در مدل شماره ۳.

Transducer	Instrument ID	Coordinates (in)				
Accelerometer		x	у	Z		
	A1	-3/00	2/73	0/00		
	A2	-3/00	2/20	0/00		
	A3	-3/00	4/50	0/00		
	A4	3/50	3/00	6/96		
	A5	3/50	4/00	6/96		
	A6	10/50	3/00	6/96		
	A7	10/50	4/00	6/96		
Linear variable differential transducer	LVDT1	14/50	2/80	2/68		
	LVDT2	14/50	2/80	4/69		
	LVDT3	14/50	2/80	6/69		
	LVDT4	14/50	2/80	8/70		
	LVDT5	2/90	3/50	8/80		
	LVDT6	11/19	3/50	8/85		
Pore pressure transducer	P1	2/33	3/50	0/13		
	P2	11/67	3/50	0/13		
	P3	2/33	3/50	3/48		
	P4	5/25	3/50	3/48		
	P5	8/75	3/50	3/48		
	P6	11/67	3/50	3/48		

جدول ۲: پارامتر های مدل اصلی خاک %70, Nevada Sand Dr=40%.

	M_{g}	M_{f}	α_{g}	$\alpha_{_f}$	H_{evop}	H_{esop}	eta_0	β_1	${H}_0$	H_{u0}	γ_u	γ_{DM}
Nevada Sand 40%	1/10	۱/۰۳۵	·/۴۵	۰/۴۵	v v · · · ·	1100	4/4	• / ٢	÷	۴۰۰۰۰۰	۲/۰	•/•
Nevada Sand 70%	1/88	١/٣٠	./40	•/40	۲	۲	4/1	• / ٢	۷۵۰	4	۲/۰	۴/۰

جدول ۳: پارامتر های مدل اصلاح شده خاک %70 , %Nevada Sand Dr=40.

	M_{cs}	Γ	λ
Nevada Sand 40%	1/15	2/5	0/2
Nevada Sand 70%	1/32	2/5	0/2

مدل شماره ۱۱.	دقیق در	گیری ابزار ا	قرار ٔ	۴: محل	جدول
---------------	---------	--------------	--------	--------	------

Transducer	Instrument ID	Coordinates (m)		
		х	У	Z
	ACC1	47/0	3/5	1/5
	ACC2	47/0	20/5	1/5
	ACC3	19/0	12/0	0/25
Assolutionstar	ACC4	24/0	12/0	1/4
Acceleronneter	ACC8	19/5	12/0	4/0
	ACC9	18/0	12/0	6/0
	ACC10	8/5	12/0	6/0
	ACC11	23/8	12/0	7/0
	ACC12	21/0	12/0	7/1
	PPT2	15/0	12/0	4/5
	PPT3	10/0	12/0	5/8
Pore	PPT4	21/0	12/0	2/0
Pressure	PPT5	21/0	12/0	4/0
Transducer	PPT6	21/0	12/0	6/0
	PPT7	27/0	12/0	1/4
	PPT8	40/0	12/0	1/4
Vertical Displacement	LVDT1	25/0	12/0	7/0

() ()

Mark III

.

Pastor & Zienkiewicz

 (ψ)

DIANA-SWANDYNE II

.

.

()

() () ()

()

.

- 1 Sabzi, Z. (2008). *The Study of the Effect of State Parameter in Constitutive Models in the Field Problems*.M.Sc. Thesis, the University of Tehran.
- 2 Been k. and Jefferies, M. G. (1985). A State Parameter for Sands. Geotechnique, Vol. 35, No. 2, PP. 99-112.
- 3 Jefferies, M. B. (1993). *Nor-sand: a simple critical state model for sand*. Geotechnique, Vol. 43. No.1. PP. 91-103.
- 4 Zolfaghari, Mohammad (2002). *The Study of Sands Behaviour under Undrained Conditions and Modification of an Elastoplastic Model*. M.Sc. Thesis, the University of Tehran.
- 5 Chan, A. H. C. (1988). A Unified Finite Element Solution to Static and Dynamic Problem of Geomechanics. PhD Thesis. University College of Swansea.
- 6 Pastor, M., Zienkiewicz, O. C. and Leung, K. H. (1985a). "Simple Model for Transient Soil Loading in Earthquake Analysis. II. Non-Associative Model for Sands." *International Journal for Numerical and Analytical Methods in Geomechanics*. Vol. 9, PP. 447-498.
- 7 Zienkiewicz, O. C., Leung, K. H. and Pastor, M. (1985b). "Simple Model for Transient Soil Loading in Earthquake Analysis. I. Basic Model and Its Application." *International Journal for Numerical and Analytical Methods in Geomechanics*. Vol. 9, PP. 453-447
- 8 Chan, A. H. C., Zienkiewicz, O. C. and Pastor, M. (1986). "Transformation of Incremental Plasticity Relation from Defining Space to General Cartesian Stress Space." *Research Report of Institute for Numerical Methods in Engineering*, Department of Civil Engineering, University College of Swansea. 592. 87
- 9 Pastor, M., Zienkiewicz, O. C. and Chan, A. H. C. (1990). "Theme/Feature Paper. Generalized Plasticity and the Modelling of Soil Behaviour." *Journal for Numerical and Analytical Methods in Geomechanics*. Vol. 14, PP. 151-190.
- 10 Manzari, M. T. and Defalias, Y. F. (1997). A critical state two-surface plasticity model for sands. Geotechnique Vol. 47, No.2. PP. 255-272.
- 11 Ishihara, K., Tatsuoko, F. and Yasuba, S. (1975). "Undrained Deformation and liquefaction of sand under cyclic stress." *Soil and Foundations*, Vol. 15, PP. 29-44
- 12 Arulanandan, K. and Scott, R. F. (1993). "Verifivcation of Numerical Procedure for the analysis of Liquefaction Problems." *Proceeding of the International Confrence on the Verifivcation of Numerical Procedure for the analysis of Liquefaction Problems.* Balkema, Rotterdam.

1 - Fabric	2 - State
3 - Critical state	4 - Characteristic Line
5 - Deviatoric	6 - Steady State Line
7 - VELACS: VErification of Liquefaction A	Analysis using Centrifuge Studies
8 - Laminar Box	9 - Nevada Sand
10 - Rigid Box	